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slab3d is a software-based real-time virtual acoustic environment (VAE) rendering system originally developed in 
the Spatial Auditory Displays Lab at NASA Ames Research Center.  slab3d is now maintained externally as well. 
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Introduction 
 
 
The slab3d release is a collection of applications, libraries, documentation, MATLAB utilities, and source code for 
virtual acoustic environment rendering and real-time audio signal processing.  The list below provides a quick 
reference to some of the slab3d components. 

• just curious about 3D-sound - see SLABScape  
• rendering your own HRTFs - see slabtools and SLABScape  
• writing experiment software - see SRAPI and slabcon  
• writing virtual environment software - see SRAPI and SLABScape  
• writing rendering algorithms - see Render Plugins and SLABScape  
• writing signal generators - see Generator Plugins, SLABScape, and SLABSurface  
• real-time audio signal processing - see slabwire and SLABWireDemo  
• frequency-driven OpenGL displays - see SLABWireDemo  
• network communications - see DISTrans, DISRec, AvadeServer, and SRAPI 

 
Installation 
 
Please see slab3d.sonisphere.com for information regarding slab3d system requirements, download, and 
installation. 
 
Windows Sound Schemes 
When listening to slab3d with headphones it is probably best to disable system sounds by selecting the "No 
Sounds" sound scheme under Control Panel | Sounds and Multimedia | Sounds | Scheme.  Otherwise, an 
uncomfortably loud system sound might occur while listening to slab3d. 
 
Speakers Property 
Some sound peripherals process the output signal based on the type of display attached to the output (e.g., 
headphones versus desktop speakers).  When using slab3d, it is best to select an unprocessed output path under 
Control Panel | Sounds and Multimedia | Audio | Advanced | Speakers | Speaker Setup. 
 
ASIO 
ASIO latency will most likely be less than DirectSound latency (e.g., ~4ms vs. ~23ms for a similar 
configuration).  If your sound peripheral does not have an ASIO driver, you might be able to use the slab3d ASIO 
features by installing ASIO4ALL (www.asio4all.com).  ASIO4ALL provides an ASIO interface wrapper for the 
standard Windows Driver Model (WDM) sound driver interface.  ASIO4ALL v2.6 was successfully tested with the 
"Avance AC97 Audio" sound device.  The impact of ASIO4ALL on slab3d latency has not been examined. 
 
 
Citing slab3d 
 
As a courtesy, the use of slab3d in published research should be acknowledged in the publication by citing the 
two slab3d home pages: 
 
[1]  http://slab3d.sonisphere.com/, http://humansystems.arc.nasa.gov/SLAB/ 
 
The preferred paper reference describing the slab3d release and its implementation: 
 
[2]  Miller, J. D. and Wenzel, E. M., "Recent Developments in SLAB: A Software-Based System for Interactive 
Spatial Sound Synthesis," Proceedings of the International Conference on Auditory Display, ICAD 2002, Kyoto, 
Japan, pp. 403-408, 2002. 
  

http://slab3d.sonisphere.com/
http://www.asio4all.com/
http://slab3d.sonisphere.com/
http://humansystems.arc.nasa.gov/SLAB/
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Additional Documentation 
 
This document and others are available in the release installation directory: 
 
    slab3d User Manual    <slab3d install dir>\doc\slab3d_user_manual.pdf 
    SRAPI Reference Manual   <slab3d install dir>\doc\ref\index.html 
    slabwire Reference Manual   <slab3d install dir>\doc\slabwire\index.html 
    slabtools User Manual   <slab3d install dir>\doc\slabtools_user_manual.pdf 
    slabtools Reference Manual   <slab3d install dir>\doc\slabtools\index.html 
 
Websites: 
 
    slab3d home page     http://slab3d.sonisphere.com  
    slab3d SourceForge.net project page  http://sourceforge.net/projects/slab3d  
    NASA SLAB Home Page   http://humansystems.arc.nasa.gov/SLAB  
    NASA Open Source Software site  http://opensource.arc.nasa.gov  
 
Papers:  http://humansystems.arc.nasa.gov/groups/ACD/personnel_view.php?personnel_id=81  
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Open-Source Software 
 
The following open-source software is used in slab3d development.  Many thanks to the authors! 
 
Software How Used Source 
rtdis 
slabDISinterface 

low-latency DIS support 
DIS support library 

slab3d usrlib directory (from John Stewart, AFRL) 
slab3d usrlib directory (permission granted by AFRL) 

HighPrecisionTimer 
ASIO 

AvadeClient Update Rate 
low-latency audio interface 

https://github.com/mzboray/HighPrecisionTimer  
http://www.steinberg.de/ 

STK gstk generator plugin http://ccrma.stanford.edu/software/stk/ 
Auditory Toolbox cbe.m critical band filters http://rvl4.ecn.purdue.edu/~malcolm/interval/1998-010/ 
fft.cpp SLABWireDemo FFT "A Programmer's Guide to Sound" by Tim Kientzle 
GLUT SLABWireDemo OpenGL 

displays 
http://www.xmission.com/~nate/glut.html 

Shortcut SRAPI SetLinks() http://www.codeguru.com 
libresample slabwcon, CResampler2 http://www-

ccrma.stanford.edu/~jos/resample/Available_Software.html 
VBAP incomplete, rvbap.cpp http://www.acoustics.hut.fi/software/vbap/Pure_Data/ 
doog2.m, 
gaussian.m 

dog.m, mdog.m DOG 
generation 

http://www.cs.berkeley.edu/~stellayu/code.html 

wave_matlab wmdemo.m wavelet 
transform 

http://paos.colorado.edu/research/wavelets/ 

WaveLab cwt.m wavelet transform 
scaling 

http://www-stat.stanford.edu/~wavelab/ 

mp_fm2d.m dustimg.m low-vis image http://technion.ac.il/~pavel/comphy/  
doxygen documentation http://www.stack.nl/~dimitri/doxygen/ 
Graphviz documentation http://www.graphviz.org/ 
Dia for Windows documentation http://dia-installer.de 
m2html documentation http://www.artefact.tk/software/matlab/m2html/ 
 

https://github.com/mzboray/HighPrecisionTimer
http://www.steinberg.de/
http://ccrma.stanford.edu/software/stk/
http://rvl4.ecn.purdue.edu/%7Emalcolm/interval/1998-010/
http://www.xmission.com/%7Enate/glut.html
http://www.codeguru.com/
http://www-ccrma.stanford.edu/%7Ejos/resample/Available_Software.html
http://www-ccrma.stanford.edu/%7Ejos/resample/Available_Software.html
http://www.acoustics.hut.fi/software/vbap/Pure_Data/
http://www.cs.berkeley.edu/%7Estellayu/code.html
http://paos.colorado.edu/research/wavelets/
http://www-stat.stanford.edu/%7Ewavelab/
http://technion.ac.il/%7Epavel/comphy/
http://www.stack.nl/%7Edimitri/doxygen/
http://www.graphviz.org/
http://dia-installer.de/index.html
http://www.artefact.tk/software/matlab/m2html/
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Architecture, Libraries, and APIs 
 
 
Architecture 
 
The slab3d architecture is illustrated in the figure below. 
 
 

slab3d Architecture 
 

 
  
 
 
SRAPI API and Library:  The SLAB Render API (SRAPI) provides a platform for the development of virtual 
acoustic environment (VAE) applications.  Using SRAPI, the user can control rendering, allocate sound sources, 
configure frame-accurate callbacks, select sound output destinations, and specify acoustic scene and renderer 
parameters (e.g., sound source location, number of HRIR FIR taps).  SRAPI also supports a Script and Modifier 
mechanism for the automatic updating of acoustic scene parameters.  
 
Documentation: SRAPI Reference Manual  
Library: <install dir>\lib\srapimr.lib (mr = multi-threaded, release)  
Header Files: <install dir>\include\  
Source Code: <install dir>\src\srapi\ 
   
 
slabwire API and Library:  The slabwire library is used to configure a StreamIn-DSP-StreamOut sample 
processing chain.  It is used internally by SRAPI but it can also be used as a stand-alone library.  When using 
SRAPI, slabwire is used to control StreamIn sample streams and to develop Render Plugins and Generator 
Plugins.  The SLABWireDemo application demonstrates the direct use of the slabwire API using the SoundIn-
DSP-SoundOut framework.  The slabwcon application demonstrates low-level slabwire use. 
 
Documentation: slabwire Reference Manual  
Library: <install dir>\lib\slabwmr.lib (mr = multi-threaded, release)  
Header Files: <install dir>\include\  
Source Code: <install dir>\src\slabw\ 
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Render Plugin API:  The VAE rendering engine is encapsulated in the Render Plugin (rplugin) "Spatial".  rplugins 
can be swapped in and out while rendering allowing for the comparison of different rendering strategies.  rplugins 
also allow for the construction of tailored displays for specific applications (e.g., a spatial communications 
system).  See Included Plugins. 
 
Documentation: slabwire Reference Manual  
Library: Several render plugins are built into the srapi library.  Additional render plugins can be placed 

in the SRAPI-based executable directory, e.g., <install dir>\bin\r*.dll.  
Header Files: <install dir>\include\srapi.h (for built-in render plugin use) and <install dir>\include\rplugin.h 

(for render plugin development)  
Source Code: <install dir>\src\r*\ 
   
 
Generator Plugin API:  Signal generator sound sources are encapsulated in Generator Plugins (gplugins).  This 
enables users to conveniently add additional signal generation algorithms to slab3d without modifying slab3d 
itself.  See Included Plugins. 
 
Documentation: slabwire Reference Manual  
Library: Generator plugins are placed with the SRAPI-based executable, e.g., <install dir>\bin\g*.dll.  
Header File: <install dir>\include\gplugin.h  
Source Code: <install dir>\src\g*\ 
   
 
Static-state and Render-time, Static Settings and Dynamic Settings:  

• static-state = state of SRAPI when not rendering  
• render-time = state of SRAPI when rendering  
• static settings = setting that must remain constant while rendering  
• dynamic settings = settings that can be set at any time  

Some static settings are sensitive to setting sequence, e.g.: SampleRate before StreamOuts before 
StreamIns.  Outs and ins depend on the sample rate and ASIO-in depends on ASIO-out.  The SRAPI Reference 
Manual states if a function is a static-state function.  All other functions should be assumed to be dynamic 
functions.  This differentiation primarily impacts the calling sequence (e.g., static, dynamic, render start, dynamic, 
render stop, static, ...) and error handling.  There are similar constraints in slabwire. 
   
 
SRAPI Sound Sources and StreamIns:  An SRAPI "sound source" contains state information for a virtual 
environment sound emitter (Spatial render plugin) and a mixer channel strip (Mixer render plugin).  The SRAPI 
SrcAlloc() function allocates a sound source and assigns it a user-specified ID.  This ID is used to set source 
attributes via the Src*() functions.  All sound sources must be allocated before calling RenderStart() to initiate 
rendering.  The samples attached to a sound source are termed StreamIns and are allocated using the SiAlloc*() 
functions.  StreamIns are attached to sound sources using the SrcStream() function.  The various StreamIn types 
are shown in the figure above. 
   
 
SRAPI Outputs:  The SRAPI Out*() functions are used to define the destination of sample output.  For the Spatial 
renderer, this is a binaural signal corresponding to the sampled sound pressure at the openings of the listener's 
ear canals.  The various stream output types (aka StreamOuts) are shown in the figure above. 
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Support Libraries 
 
usrlib libraries:  Download information is available under Acknowledgements. 

• slabDISInterface provides DIS (Distributed Interactive Simulation) packet support. 
• rtdis provides an alternate DIS interface.  It also includes a DIS transmitter. 
• traklib is a Polhemus Fastrak electromagnetic tracker driver developed in the Spatial Auditory Displays 

Lab at NASA Ames Research Center.  traklib is used by SLABScape to access the Fastrak. 
• STK is "The Synthesis ToolKit in C++" and is used by the gstk Generator Plugin.  See Included Plugins. 

 
download libraries:  Information for the download libraries is provided under Building slab3d. 

• ASIO is a low-latency sound device interface. 
 
Microsoft Visual C++ libraries:  See the project settings for the various slab3d applications. 
 
DirectX and XNA:  See Building slab3d.  
 
 
CSRAPI 
 
The primary C++ interface used to access SRAPI is CSRAPI (srapi.h).  CSRAPI is used to configure sound 
sources, input streams, and sound outputs and to control rendering.  It is also used to specify the acoustic scene 
and renderer parameters. 
 
The console app below demonstrates the minimum API necessary to render a sound source. 
 
#include <windows.h> 
#include "srapi.h" 
 
int 
main() 
{ 
  CSRAPI  cSRAPI; 
  if( cSRAPI.ErrorState() ) 
    return 1;  // error 
 
  // specify Waveform-Audio device output 
  cSRAPI.OutWave(); 
 
  // allocate a sound source, ID = 0 
  cSRAPI.SrcAlloc( 0 ) 
 
  // allocate a looped wave file StreamIn, ID = 0 
  if( cSRAPI.SiAllocFile( 0, "\\slab3d\\wavs\\voice.wav" ) != ERR_SLAB_NONE ) 
    return 1;  // error 
 
  // attach ch 0 (third param) of stream 0 (second param) to 
  // source 0 (first param) 
  cSRAPI.SrcStream( 0, 0, 0 ); 
 
  // set source 0 attributes 
  cSRAPI.SrcLocate( 0, 0.5, 0.5, 0.5 );  // x,y,z in meters 
  cSRAPI.SrcGain( 0, 0.0 );              // dB 
  cSRAPI.SrcEnable( 0, true );           // enable rendering 
 
  // render source for 5 seconds 
  cSRAPI.RenderStart(); 
  Sleep( 5000 ); 
  cSRAPI.RenderStop(); 
  return 0;  // success 
} 
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CSRAPI Defaults 
 
Render Plugin:  The default render plugin used for auditory display rendering is the binaural HRTF-based 
renderer "Spatial" (Render ID RENDER_SPATIAL defined in slabdefs.h). 
 
Render Plugin Directory:  The render plugin directory is the executable directory. 
 
Generator Plugin Directory:  The default generator plugin directory is the executable directory.  A generator 
plugin directory can also be specified when allocating a signal generator. 
 
HRTF Database:  The default HRTF database is <slab3d install dir>\hrtf\jdm.slh (sample rate = 44100 
samples/s).  This database is built into the srapi library (using hrtfhex.h generated by slabcon). 
 
Setting Default Function 
Sample Rate 44100 samples/s SetSampleRate() 

FIR Taps 128 taps for the direct path, 32 taps for 
reflections SetFIRTaps() 

Smooth Time 15ms parameter tracking filter time constant SetSmoothTime() 
Non-spatial Source Gain Offset -24dB SetNSOffset() 
Source Location origin, 0 x,y,z SrcLocate() 
Source Enable not enabled SrcEnable() 
Source Reflection Enable not enabled SrcRefEnable() 
Source Reflection Offset disabled SrcRefOffset() 
Source Gain 0 scalar gain SrcGainScalar() 
Source Mute not muted SrcMute() 
Source Radius 10cm SrcRadius() 
Source Spread Exponent 1 SrcRadius() 
Room Depth (X) 4m EnvPlanes() 
Room Width (Y) 4m EnvPlanes() 

Room Height (Z) 
4m, ceiling = 4m - dLstHeight, floor = -
dLstHeight, 
dLstHeight = 1.8288m = 6' 

EnvPlanes() 

Wall Materials none, i.e., perfect reflector EnvMaterial() 
Listener Position head at origin, 0 x,y,z,yaw,pitch,roll LstPosition() 
Listener Sensor Offset 7.5" above interaural axis LstSensorOffset() 
Delay Line Length 500ms SetDelayIn() 
Level Meter Attack Time Constant 137ms SetLevelTimes() 
Level Meter Release Time 
Constant 137ms SetLevelTimes() 

Skip Silence Threshold 0.05 linear gain SetSkipSilence() 
Skip Silence Time 0.5s SetSkipSilence() 
Skip Silence Fade-In 68ms SetSkipSilence() 
Tick Updating disabled, i.e., use frame updating SetTick() 
 
Some of the defaults in the table have corresponding defines in slabdefs.h.  "Sample Rate" through "Listener 
Sensor Offset" are reset to their defaults via CSRAPI::SetDefaults(). 
Copyright (C) 2006-2017 Joel D. Miller.  All Rights Reserved.
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Coordinate Systems 
 
 
slab3d uses a right-handed, FLT (Front-Left-Top) coordinate system, i.e., if fingers curled from x (front) to y (left), 
thumb points to z (top). 
 
Location 
+x front, through nose +y left, through left ear +z top, through top of head 

 
Orientation  (positive CCW looking down axis towards origin) 
-yaw to right 
+yaw to left 

-pitch up 
+pitch down 

+roll right 
-roll left 

 
Polar 
+azimuth to right 
-azimuth to left 

+elevation up 
-elevation down 

+range forward 
-range backward 

 
 
Convolvotron and Polhemus Azimuth and Elevation 
 
These definitions are compatible with the Polhemus Isotrak and Fastrak head trackers and the Crystal River 
Engineering Convolvotron coordinate systems with the following exceptions: 
 
slab3d azimuth = - Convolvotron and Polhemus azimuth 
slab3d and Convolvotron elevation = - Polhemus elevation 
 
 
Polhemus Transmitter and Receiver 
 
The physical placement of the Polhemus transmitter and receiver often results in the following configuration (as 
specified on the Fastrak transmitter): +X forward, +Y right, +Z down.  Since slab3d uses +Z up and +Y left, the 
signs of Y, Z, Yaw, and Pitch must be changed if your tracker driver follows this convention. 
 
 
Microsoft XNA 
 
XNA uses a right-handed right_x-top_y-back_z coordinate system with +yaw left, +pitch up, +roll left.  The X-
prefixed Managed SRAPI functions are provided for use with XNA. 
 
 
Latitude-Longitude-Height (LLH) and Aircraft Rotations 
 
latitude in degrees, +90N to -90S 
longitude in degrees, -180W to +180E 
 
Aircraft orientation angles rotate the slab3d coordinate system 180° about the x (roll, nose) axis, thus: 
 
aircraft yaw = - slab3d yaw 
aircraft pitch = - slab3d pitch 
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Render and Generator Plugins 
 
 
All audio rendering in slab3d is performed with render plugins (rplugins).  The base class of all rplugins is 
CRPlugIn.  The default rplugins are built into the srapi library.  Additional rplugins can be built as DLLs and placed 
in the SRAPI-based executable directory.  All rplugins found in this directory will be read into memory when a 
CSRAPI object is allocated.  The SRAPI Render Functions exist for querying and selecting rplugins.  Through the 
CSRAPI class, rplugins are given access to SRAPI's scene parameters, input delay lines, and output stream.  The 
rplugin DLL and CSRAPI interface is only supported by SRAPI; rplugins can be created and used as CRPlugIn 
subclasses in slabwire. 
 
All signal generation in slab3d is performed with generator plugins (gplugins). Similar to rplugins, gplugins are 
subclassed from CGPlugIn, built as DLLs, and placed in the slab3d-based executable directory.  A gplugin DLL 
directory can also be specified when allocating a generator.  gplugins are completely implemented in slabwire and 
are thus accessible from both slabwire and SRAPI. 
 
See Also:  CSRAPI, CRPlugIn, CGPlugIn, and gslab.h in the SRAPI Reference Manual.  
 
 
Starter Projects 
 
The rmyplugin project is the starter project for creating user Render Plugins.  The gslab project is the starter 
project for creating user Generator Plugins.  Both projects contain functioning example code that illustrates where 
to place your new custom code. 
 
Follow the steps below to create your own plugin using Microsoft Visual C++: 

1. Create a new Win32 DLL project. 
2. Delete the generated .cpp from the project and from the directory. 
3. Copy rmyplugin.cpp (Render Plugin) or gslab.cpp (Generator Plugin) from slab3d's src\ directory to your 

new project directory.  Rename it if you wish.  Add it to the project. 
4. Add the slab3d include\ and include\slabw directories to the Additional Include Directories compiler 

property. 
5. For slab3d to find your DLL, it must reside in the slab3d-based executable's directory.  Set the linker 

Output File property as follows: 
1. For debug DLLs, enter the name of your DLL appended to the corresponding executable's path. 

E.g., "<slab3d install dir>/bin/r*d.dll" 
where '*' denotes a name of your choosing, 'r' indicates the DLL is a "render" plugin, 'd' indicates 
the DLL is the debug version of the DLL. 

2. The release DLL format for the example above is "<slab3d install dir>/bin/r*.dll". 
3. For Generator Plugins, replace the 'r' prefix with a 'g' prefix. 

Source Code:  The source code for rmyplugin is in <install dir>\src\rmyplugin\.  The source code for gslab is in 
<install dir>\src\gslab\. 
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slab3d  Release Plugins 
 
The following Render Plugins and Generator Plugins are included in the slab3d release.  Render Plugins are 
prefixed with an 'r' and Generator Plugins are prefixed with a 'g'. 
 

• rspatial - contains "Spatial", the slab3d auralization algorithm.  The rspatial source code contains the 
CSpatial class that can be used as a baseclass for special purpose spatial displays (e.g., rsar).  

• rdiotic - contains the following Render Plugins: "Diotic", "Left-Monotic", "Right-Monotic", and "Dichotic".  
• rmyplugin - contains the "Plugin Example" plugin, an extremely simple diotic display plugin that is useful 

as a Render Plugin starter project.  
• rmixer - contains the "Mixer" plugin for use with the CSRAPI::SrcMix*() functions.  
• rsar - was developed for a Search And Rescue communications application.  It demonstrates how to 

extend "Spatial" for special-purpose applications.  It also demonstrates the use of the SRAPI extension 
Plugin Variables.  An rsar DLL is not included in the slab3d release and rsar is not supported by 
SLABScape.  

• gslab - contains "noise", "sine", "square", "triangle", "am" (amplitude modulation), and "impulse" 
generators.  In addition to providing slab3d's default signal generators, gslab also serves as the 
Generator Plugin starter project.  

• gstk - wraps a Generator Plugin interface around the STK (Synthesis Toolkit) instruments.  For more 
information regarding STK, see http://ccrma.stanford.edu/software/stk/.  

 
Binaries: 

• Built-in Render Plugins:  <install dir>\lib\srapimr.lib 
• Additional Render Plugins:  <install dir>\bin\r*.dll 
• Generator Plugins:  <install dir>\bin\g*.dll  

 
Source Code: 

• Built-in Render Plugins:  <install dir>\lib\src\srapi\<plugin name>  
• DLLs:  <install dir>\src\<plugin name>\  

  

http://ccrma.stanford.edu/software/stk/
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Spatial Render Plugin 
 
 
Audio rendering in slab3d is divided between the SRAPI library and Render Plugins.  The default Render Plugin is 
the HRTF-based "Spatial" plugin.  The listener HRTF database used by Spatial contains minimum-phase head-
related impulse response (HRIR) pairs and interaural time delays (ITDs) at fixed azimuth and elevation 
increments. The azimuth and elevation increments can vary from one database to another.  The slabwire frame 
size is 32 samples, meaning sound samples are routed through the signal processing chain 32 samples at a time. 
The sample data type is single-precision floating-point and all calculations are performed using single or double-
precision floating-point arithmetic. Every frame, the Render Plugin receives a frame of samples. For a sample rate 
of 44,100 samples/s, the frame rate is 1378 frames/s. Every frame the following processing occurs: 
 
Script, Trajectory, and Callback Update - updates the script, trajectory and callback mechanisms at update 
rates defined by the user. The callback feature allows user code (e.g., a custom source trajectory) to run inside 
the slabwire thread. 
 
Acoustic Scene Update - converts scene parameters to DSP parameters. Spatial performs a scene update each 
time the user updates a scene API parameter (e.g., listener position). The maximum update rate depends on 
available CPU resources. Since the HRIR FIR filter coefficients are updated every other frame, the absolute 
maximum update rate is 690Hz. A typical scene update rate is 120Hz. 

• Acoustic Scene Update:  
o Tracker Sensor Offset - compensates for the location of the head tracker sensor.  
o Image Model - computes the location of sound source reflection images.  
o 3D Projection - converts scene information into listener-relative geometric quantities:  

 Image-Listener Range  
 Image Arrival Angle  

• Signal Flow Translation - converts listener-relative geometric quantities into FIR coefficients and delay 
line indices (aka “DSP parameters”) for each sound path and for each of the listener’s ears, modeling:  

o Propagation Delay  
o Spherical Spreading Loss  
o HRTF Database Interpolation (FIR Coefficients, ITD)  

Process - processes each sound image, performing the following signal processing tasks: 

• Delay Line - models propagation delay and ITD.  
o Delay Line Indices Parameter Tracking - bumps current delay line indices towards target values 

every sample.  
o Provided by slabwire layer:  

 Interpolated Delay Line - implements a 2x up-sampled, linearly interpolated, fractionally 
indexed delay line.  

• IIR Filter - models wall materials with a first-order IIR filter.  
• FIR Filter - models spherical spreading loss and head related transfer functions.  

o FIR Coefficient Parameter Tracking - bumps current FIR coefficients towards target values every 
other frame.  

o FIR Filter Operation - implements an arbitrary length FIR filter. Typically, the direct path is 
computed with 128 taps and each reflection with 32 taps.  

Mix - mixes the direct path and six first-order reflections for an arbitrary number of sound sources. 
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Modeling Notes 

• ITD is implemented by lagging the contralateral ear relative to the ipsalateral ear.  In a real-world dynamic 
situation the ITD would be split between a lag and lead, respectively.  

• When a sound source is moving relative to the listener, regardless of source-listener distance, the HRTF 
is updated immediately.  In reality, due to propagation delay, there would be a slight delay before the 
sound wave incident angle changed.  This is true of other source attributes as well, e.g., if one considered 
the source gain as a volume knob on the source.  



14 
 
 

 
Mixer Render Plugin 
 
 
The Mixer Render Plugin block diagram is shown below.  Please see the SRAPI Reference Manual and the 
SrcMix functions for more information. 
 
 

Mixer Render Plugin Block Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Definitions 
 
n source number in order allocated 
HRTFaux#,src# each aux send is routed to an HRTF az,el processing block, there are two independent HRTF 

processing blocks per source 
enaux#,src# enable processing block 
azaux#,src# azimuth 
elaux#,src# elevation 
gsrc#,out# source gain 
raux#,src#,out# aux return gain applied to spatial signal, typically, odd/even out pairs should be identical, r1,n,1 = 

r1,n,2, r1,n,3 = r1,n,4, etc. 
 
The sum blocks sum over all sources.  

HRTF1,n(en1,n,az1,n,el1,n) 

HRTF2,n(en2,n,az2,n,el2,n) 

R 

L 

R 

L 

 
 
 

∑ 
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aux returns 
source n 

out 1 

out 2 

aux send 1 

aux send 2 

etcetera to out 32 

x 

x 

x 

x 

x 

x 

gn,1 

r1,n,1 

r2,n,1 

gn,2 

r1,n,2 

r2,n,2 
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HRTF Databases 
 
 
slab3d HRTF (Head-Related Transfer Function) databases contain HRIR (Head-Related Impulse Response) and 
ITD (Interaural Time Delay) filter data for spatial rendering.  Measured HRTFs can be obtained using insert-ear 
microphones and a spherical array of speakers to construct a spherically-sampled database.  The HRIRs are 
converted to minimum-phase to reduce filter length and to simplify real-time interpolation.  Biharmonic spline 
interpolation is used to resample the data to a uniform grid.  The grid is specified by an azimuth increment and an 
elevation increment.  The default slab3d HRTF database is "jdm.slh".  The SLH suffix denotes a slab3d 
HRTF.  "HRTF databases" are sometimes referred to as "HRTF maps".  See CSRAPI::LstHRTF() in the SRAPI 
Reference Manual for SRAPI HRTF database selection. 
 
 
slab3d HRTF database format 
 
 
HRTF Database Header 
 
struct HRTFHeader 
{ 
  short  nVersion;         // database format version (2) 
  char   strName[32];      // subject's name 
  char   strDate[8];       // date measured 
  char   strComment[256];  // text comment 
  short  nAzInc;           // az increment, degrees 
  short  nElInc;           // el increment, degrees 
  short  nNumPts;          // number of HRIR points 
  long   lSampleRate;      // sample rate 
}; 
 
 
The HRIR and ITD data immediately follow the header (below: nAzInc = 30, nElInc = 18, nNumPts = 128). 
 
 AZ    EL 
 180,  90, left  ear, hrir pt 0        Left ear points 
... 
                      hrir pt 127 
 180,  90, right ear, hrir pt 0        Right ear points 
... 
                      hrir pt 127 
 180,  72, left  ear, hrir pt 0        Elevations (grouped by azimuth) 
... 
      -90, right ear, hrir pt 127 
 150,  90, left  ear, hrir pt 0        Azimuths  
... 
-180, -90, right ear, hrir pt 127 
 
 180,  90, delay                       Delays (+ left ear lag, - right ear lag) 
 180,  72, delay 
... 
-180, -90, delay 
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jdm.slh parameters 
 
Number of HRIR pairs and ITDs: 143 
Azimuth grid: 180 to -180 in -30 degree increments 
Elevation grid: 90 to -90 in -18 degree increments 
HRIR length: 128 points 
Sample Rate: 44100 samples/s 
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Error Handling 
 
 
There are two error checking modes corresponding to the two states of SRAPI, static-state and render-time.  The 
two modes are required because of render-time multitasking.  When rendering, SRAPI runs in two threads of 
execution, the API Thread (same as the user's thread) and the Render Thread, a thread created during a call to 
RenderStart().  Errors can occur inside the Render Thread without an API call (e.g., a state error in a Render 
Plugin not directly related to an API call).  The user cannot check the return value of an API function to catch this 
error (unless "polling" and then only during the next "error poll", see below). 
 
Static-state Error Catching 
 
Function Return Values:  Many SRAPI functions return SLABError.  Static-state errors are typically caught with 
function return values. 
 
Render-time Error Catching 
 
There are two methods for catching render-time errors: 
 
Notification Callback:  When using a notification callback, SRAPI notifies the user of an error by calling the user's 
callback function with SC::NotifyDspDone (i.e., DSP done due to error).  Before calling RenderStart(), call 
SetNotify() specifying a notification callback function.  If a render-time error occurs, the notification callback will be 
called.  Use an error query function to verify the notification corresponds to an error (notifications can also be 
used to indicate render completion using the AutoStop feature). 
 
Error Polling:  Whenever an error occurs, SRAPI enters an "error state."  In an error state, all error-returning 
SRAPI functions return the current error.  Error Polling refers to catching existing errors via function return values 
or error status functions.   In other words, the user is checking for an error not necessarily caused by the function 
itself (e.g., an error caused by a previous function where the return value wasn't checked).  
 
Error State 
 
SRAPI enters an "error state" whenever an error occurs.  In an error state: 
 

• rendering is stopped 
• the sound output stream is stopped 
• script processing is stopped 
• all functions returning SLABError return the current error 
• error information can be queried via ErrorState(), Error(), ErrorString(), and ErrorStack() 
• error state maintained until explicitly cleared with ErrorClear() 

 
Error Functions Overview 
 
The following functions exist for querying error information and clearing error state: 
 

• ErrorState():  returns true if in error state, false if not 
• Error():  returns the current SLABError 
• ErrorString():  returns a string describing the current error 
• ErrorStack():  returns a string providing call stack error information for the current error 
• ErrorClear():  clears error state 
• SetNotify():  sets the notification callback function 
• LogName():  sets the name of the log file used for logging error information 
• Reset():  resets slab3d 
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Building slab3d 
 
 
Pre-built release-mode slab3d libraries, render plugins, generator plugins, and applications are included in the 
slab3d release.  Building derivative works can often be accomplished using the pre-built components (e.g., see 
the sample applications slabcon and SLABWireDemo). 
 
Note regarding static vs. shared linking:  To avoid "DLL hell", slab3d-based apps are typically statically 
linked.  Some technologies, such as the Common Language Runtime, require MFC to be accessed via a shared 
DLL.  Using this configuration with slab3d often results in linking conflicts.  The work-around is to use the Visual 
Studio options Ignore Specific Libraries in concert with Additional Dependencies.  Libs ignored by the former can 
be added using the latter.  It might take some permuting, but this should allow a mixed static/shared app to be 
built. 
 
All slab3d libraries, plugins, and applications can be built using the slab3d release and a few publicly available 
components.  The steps below assume slab3d was installed to the directory \slab3d.  This is also the directory 
used to develop slab3d, so you might see references to this directory.  In general, absolute directory paths are 
avoided, but a few may exist.  The slab3d release is built using Microsoft Visual Studio 2015 Professional. 
 
 
Build Steps 
 

• The June 2010 release of DirectSound is used for low-latency sound device output.  The DirectX SDK 
can be downloaded from the Microsoft Download Center: 
 
http://www.microsoft.com/en-us/download/default.aspx 
 
The following Visual C++ settings (or similar) should be used for the headers and libraries.  If set using 
Visual Studio Options (versus Project Settings), these directories will be used for all projects and 
solutions.  They should be place before the Windows SDK directories to avoid header clashes. 
 
Visual C++ Include Files Directory:  C:\Program Files (x86)\Microsoft DirectX SDK (June 2010)\Include 
Visual C++ Library Files Directory:  C:\Program Files (x86)\Microsoft DirectX SDK (June 2010)\Lib\x86 
 
Other DirectX 9c and after SDKs should be compatible.  Note, though, sometimes a release built on one 
machine will require a missing DLL when run on another.  I tried to avoid this by using static builds, but 
somewhere along the DirectX 9 release cycle, Microsoft moved code from a static library to a DLL forcing 
users to update their DirectX End-User Runtime. 

 
• For DIS support, the slabwire library uses the Air Force Research Library's slabDISInterface library.  This 

library is released with slab3d in the usrlib\ directory.  Build the slabDISInterface project, debug and 
release. 

 
• For Polhemus Fastrak support, SLABScape uses the NASA-developed traklib library.  Build the traklib 

project in usrlib\traklib\traklib.sln, debug and release. 

http://www.microsoft.com/en-us/download/default.aspx
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• The ASIO sound device interface is used for low-latency sample I/O.  slab3d is built using ASIO SDK 
version 2.2, but 2.0 and 2.1 should build as well.  The ASIO SDK files are not included in the slab3d 
release because the ASIO license does not allow the re-release of ASIO files.  The ASIO SDK is 
available from www.steinberg.net under Support, 3rd Party Developers.  Once downloaded, place a copy 
of the SDK in slab3d's usrlib\ directory, e.g., slab3d\usrlib\asiosdk2.2\ containing directories common\ and 
host\. 

 
• For XML read/write support, SRAPI uses XmlLite.  XmlLite appears to be installed with Visual Studio 

2015, though Visual Studio 2005 and the "Microsoft Windows SDK Update for Windows Vista" was 
originally used.  The required files are xmllite.h and xmllite.lib.  The version of the SDK I used is titled 
"Windows SDK for Windows Server 2008 and .NET Framework 3.5" (aka "Windows SDK v6.1").  The ISO 
file "6.0.6001.18000.367-KRMSDK_EN.iso" is available at the Microsoft Download Center: 
 
http://www.microsoft.com/downloads 
 
An ISO mounting program (e.g., MagicDisc) can be used to install directly from the ISO.  The default SDK 
install dir is "C:\Program Files\Microsoft SDKs\Windows\v6.1".  XP users might have to download 
"XMLLite for Windows XP (KB915865)" to obtain the xmllite.dll runtime file. 

 
• SLABScape includes a simple speech recognition demo.  This demo was originally coded using Visual 

Studio 2005 and the Microsoft Speech SDK 5.1 (SpeechSDK51.exe at the Microsoft Download 
Center).  The Speech SDK headers and libs appear to be installed with Visual Studio 2015. 
 
Note:  Even though the Speech SDK headers and libs appear to be installed with Visual Studio 2015, the 
grammar compiler gc.exe does not appear to be installed.  The Windows SDK v6.1 ISO discussed above 
contains gc.exe in the bin\ directory.  That gc.exe was used to build SLABScape's grammar.cfg and 
grammar.h files.  A pre-built version of grammar.cfg is distributed with slab3d, so v6.1 isn't necessarily 
required.  However, if errors are reported building SLABScape under v6.0A, v6.1 might help resolve 
them.  If you are not interested in speech recognition and Windows SDK v6.1, see the define 
_ENABLE_SAPI in SLABScape file sr.h. 

 
• The slabx assembly and the X-prefixed projects require XNA 4.0.  XNA is available from the Microsoft 

Download Center. 
 

• Build all \slab3d\src\slab3d.sln, debug and release. 
 
 
Building gstk 
 
gstk is a slab3d generator plugin that contains all of the STK v4.5.1 instruments (STK is "The Synthesis ToolKit in 
C++"). 
 

• Open the solution \slab3d\src\gstk\gstk.sln and build the project gstk, debug and release.  This will also 
build stklib.  If warnings occur during the build, they can be safely ignored.  stk1 is an STK test application 
that is not required for gstk. 

 

http://www.steinberg.net/
http://www.microsoft.com/downloads
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Cleaning 
 
Batch files are included for cleaning (deleting) files created during the build process: 
 

• cleanrel.bat - used to clean all non-usrlib files except those required for the release package, i.e., some 
exe's, lib's, and dll's are not deleted.  See the cleanrel.bat batch file for details. 

• clean.bat - calls cleanrel.bat and then cleans the release exe's, lib's, dll's, and res's. 
• cleandev.bat - cleans all usrlib build files except those required to build slab3d components. 
• cleanusr.bat - cleans all usrlib build files. 

 
 
Copyright (C) 2006-2017 Joel D. Miller.  All Rights Reserved. 
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Tips and Known Issues 
 
 
Tips 
 
To disable source-listener range-dependent gain scaling use SrcRadius( idSrc, dRadius, 0.0 ).  
 
To place sound sources by specifying azimuth and elevation use SrcLocateRel() or LstPosition( 0.0, 0.0, 0.0, 0.0, 
0.0, 0.0 ) with SrcLocatePolar( idSrc, az, el, range ). 
 
To specify sound source time delays use LstPosition( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ) and SrcLocatePolar( idSrc, az, 
el, dSoundSpeed * time_delay ). 
 
To generate periodic sound sources not implemented in a signal generator, use SiAllocFile() with a wave file 
editing application.  Since SiAllocFile() can loop wave files continuously, it can be used to generate fixed periodic 
sound sources.  For real-time signal generation, one can use the Generator Plugin interface (see CGPlugIn). 
 
There are three methods for muting a sound source: 
 

• Call SrcMute().  Internally, it is similar to the SrcGainScalar() method below.  The difference is SrcMute() 
preserves the gain value. 

• Call SrcGainScalar() with a scalar gain of 0.0 or call SrcGain() with a dB gain value less than -97.0 dB 
(-96.3 dB is the dynamic range of 16-bit integer).  This does not affect the processing performed.  The 
computational load remains the same.  Since the gain of the reflections is dependent upon the gain of the 
source, this mutes the reflections as well.  

• Call SrcEnable() to disable the source.  The source is no longer rendered, eliminating the source 
entirely.  Disabling a source reduces computational load.  Note, though, disabling is image-specific.  If 
using reflections, SrcEnable() only impacts the direct path.  SrcRefEnable() can be used to disable 
reflections.  

 
DSP Parameter Caution 
 
The state copy between SRAPI and slabwire is between two different threads of execution.  Thus, there can be a 
slight delay (microseconds to milliseconds) between the setting of a scene parameter, e.g., source location, and 
the resultant slabwire DSP value, e.g., source azimuth.  Source azimuth is calculated by the DSP based on 
acoustic scene geometry.  In general, this delay is not an issue.  But, it is not instantaneous, therefore scene 
queries occurring immediately after a set, e.g., data binding, could report an incorrect value (the old value).  
Polling is the safest way to ensure the parameters set in one thread of execution have been captured by another.  
The primary scene parameters of concern are source azimuth, elevation, and range. 
 
The following SRAPI functions can be used to address this issue (see HeadMatch app): 
Lock(), UpdateWaitReset(), Unlock(), UpdateWait() 
 
Known Issues 
 
slab3d does not detect all occurrences of DirectSound buffer underflow.  Usually, underflow results in an 
underflow counter increment.  But, sometimes, stuttering is heard without an underflow increment.  This is most 
likely to occur when the CPU is at maximum usage or a CPU usage spike occurs (e.g. reading a file).  A missed 
underflow can be caused by a late Windows timer update, allowing the DirectSound pointers to wrap around the 
buffer to a valid location. 
 
Development has been paused on the SLABScape "hand".  It is not documented. 
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Applications 
 
 
Several applications are included in the slab3d Release.  The ones considered of general use are distributed in 
exe form.  The others can be built using the Microsoft Visual Studio solution slab3d\src\slab3d.sln (slab3d\ refers 
to the slab3d release installation directory).  All application source code is in slab3d\src.  In general, the naming 
convention used is SLAB* for GUI applications and slab* for console applications.  All applications are written in 
C++ or C# using Microsoft Visual Studio. 
 
SLABScape is a virtual environment rendering application.  It provides a graphical user interface for several 
SLAB Render API audio-rendering parameters and Direct3D visual-rendering parameters.  SLABScape can be 
used to create Start Menu links for a slab3d installation (see SLABScape | Help | About...).  For more information, 
see the SLABScape Help Page. 
 
slabcon is a console application demonstrating SRAPI development. 
 

• The minimum API demo shows the minimum SRAPI API use required to spatially render a sound source. 
• The general API demo demonstrates multiple sound outputs, signal generator allocation, User sound 

source sample streaming, and automatic scene updating using Modifiers. 
• The Spatial2 render plugin demo demonstrates sound source VU meters, instant replay, and silence skip. 
• The HRTF demo demonstrates HRTF database loading and selection.  It also demos the use of a sound 

source azimuth modifier to create a circular trajectory. 
 
SLABWireDemo demonstrates the use of the slabwire library.  slabwire sits beneath SRAPI and is used to 
configure a low-level sound_in-to-DSP-to-sound_out audio rendering chain.  SLABWireDemo contains an 
extremely simple audio effects render plugin that contains passthru, lowpass, and flanger effects and a sample 
grabber.  The sample grabber is used to route samples to a visual waveform display and an FFT.  The FFT 
provides frequency information for a spectrum display and frequency-triggered OpenGL displays. 
 
SLABSound is a sound I/O utility.  It provides ASIO, DirectSound, Waveform API, and RIFF file information. 
 
SLABSurface provides a MIDI and/or GUI control surface interface to slab3d.  It is useful for controlling and 
developing slab3d-based synthesis patches and generator plugins. 
 
src\archive\ contains past projects that are no longer maintained. 
 
 
Copyright (C) 2006-2017 Joel D. Miller.  All Rights Reserved. 
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XScape Content and slabx Coordinates 
 
 
This discussion assumes some familiarity with XNA Game Studio 4.0.  The default XScape "Content" (models, 
textures, etc.) is built using the XScape project (see the slab3d\bin\Content\ directory).  Additional content can be 
built using the cbuilder (content builder) project (or another XNA project).  cbuilder outputs compiled content to 
slab3d\bin\ContentBuilder\.  A content source item is referred to as an "asset".  To be used by XScape, the asset 
must be compiled into a .xnb file.  This limits the asset formats to those supported by the XNA importers (or third-
party providers; this discussion is limited to the standard importers).  Compiled model and texture assets can be 
moved to XScape's Content directory for rendering. 
 
MSDN - XNA Game Studio 4.0 - Standard Importers and Processors 
http://msdn.microsoft.com/en-us/library/bb447762.aspx 
 
For models (Output Type NodeContent), two importers exist: Autodesk FBX and Microsoft X File. 
 
For textures, the supported types are .bmp, .dds, .dib, .hdr, .jpg, .pfm, .png, .ppm, and .tga. 
 
An excellent source of model content is Google 3D Warehouse: 
http://sketchup.google.com/3dwarehouse/ 
 
Models can be downloaded in the Google SketchUp format (.skp) (and sometimes Collada).  The free version of 
SketchUp only exports to Collada (.dae) and Google Earth File (*.kmz).  SketchUp Pro includes FBX 
(http://sketchup.google.com/intl/en/product/whygopro.html). 
 
The free version of SketchUp can be extended via Plugins (tests were originally conducted using SketchUp 7).  
Three plugins were found that export to the X File format: 
 

1. xExporter.rb by Erwan de Cadoudal 
http://sites.google.com/site/edecadoudal/sketchupwithdirectx 
 

2. ZbylsXExporter.rb by Zbigniew Skowron 
http://www.scriptspot.com/sketchup/scripts/zbylsxexporter 
 

3. 3D Rad Exporter 
http://www.3drad.com/Google-SketchUp-To-DirectX-XNA-Exporter-Plug-in.htm 

 
These will appear in the Google Plugins menu as "DirectX", "Zbyl's Exporter...", and "3D Rad".  The first two were 
used to convert XScape's default content.  If the DirectX SDK is installed, DirectX Viewer can be used to evaluate 
the generated X File.  SketchUp Pro's FBX Export can also be used to prepare XNA model content.  Different 
exporters yield different results, so sometimes multiple methods need to be tried before obtaining a usable result. 
 
Once the X File or FBX assets have been created, they can be added to the cbuilder Content (right-click Add | 
Existing Item...).  The model's textures will also need to be added.  If it is not obvious which textures are 
necessary, the Content processor's debug output can be used to add the textures based on error messages.  
When adding the textures, the Content properties need to be changed from the defaults: Build Action: "Compile" 
to "None" and Content Processor: "Texture - XNA Framework" to "No Processing Required".  The textures are 
processed with the model so no additional processing is required.  These steps place copies of the models and 
textures in the cbuilder project's Content directory. 
 
When using a SketchUp-generated FBX, the FBX will probably contain path information in the "Filename" and 
"RelativeFilename" fields.  An FBX is a text file so it can be edited in Visual Studio to trim the Filename and 
RelativeFilename fields to include only the texture filenames. 

http://msdn.microsoft.com/en-us/library/bb447762.aspx
http://sketchup.google.com/3dwarehouse/
http://sketchup.google.com/intl/en/product/whygopro.html
http://sites.google.com/site/edecadoudal/sketchupwithdirectx
http://www.scriptspot.com/sketchup/scripts/zbylsxexporter
http://www.3drad.com/Google-SketchUp-To-DirectX-XNA-Exporter-Plug-in.htm
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In general there are three steps one might want to consider before exporting the model: 
1. remove any components that aren't desired 
2. translate the model so that the origin is in the most meaningful location for virtual world translations and 

orientations 
3. orient the model so that XNA yaw,pitch,roll 0,0,0 is in the desired facing direction 

 
XScape and slabx use the right-handed XNA coordinate system: 

• +x right 
• +y up 
• +z back 

 
XScape default camera facing:  -z 
 
SketchUp uses the following right-handed coordinate system (Simple Template - Meters, positive axis solid, 
negative axis dotted): 

• +x right (red) 
• +y forward (green) 
• +z up (blue) 

 
SketchUp default camera facing:  +y 
 
The default camera facing for XScape, DirectX Viewer, and SketchUp are fairly similar with the SketchUp to XNA 
axes mapped as follows: 

• SketchUp +x to XNA +x  right 
• SketchUp +y to XNA -z  forward 
• SketchUp +z to XNA +y  up 

 
All exporters discussed except xExporter use the mapping above.  xExporter maps SketchUp +x to XNA -z. 
 
Orientation angles are positive CCW as viewed from the positive axis towards the origin, e.g., for XNA, +yaw is 
CCW looking down +y.  In XScape and slabx, 0 yaw is defined as facing forward towards -z. 
 
Note, the slabx.dll graphics engine uses the XNA coordinate system defined above.  The slab3d.dll (Managed 
SRAPI) sound engine uses an FLT coordinate system (for historical reasons).  To simplify the simultaneous use 
of both, Managed SRAPI extends SRAPI with XNA coordinate functions. 
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AvADE (Aviation Auditory Display Engine) Server Software 
 
 
The AvADE software comprises three applications built into the slab3d virtual acoustic environment rendering 
system:  WinSpeak, AvADE Client, and AvADE Server.  Avade was designed with maintainability and extensibility 
in mind.  It can be easily modified to support a wide variety of spatial audio and communications server 
applications. 
 
WinSpeak.exe 
 
WinSpeak allows the user to experiment with the SAPI 5.4 TTS (Text-To-Speech) voices installed on the user's 
Windows 7/8/10 system, including the specification of SSML and SAPI XML pronunciation tags.  "Microsoft Anna" 
is the default SAPI 5.4 voice installed with Windows 7.  This voice, or other installed voices, can be used to 
generate real-time TTS with Avade.  There are two Microsoft managed TTS APIs, a COM API, and a .NET API.  
The .NET API is implemented in AvadeServer.  If useful, WinSpeak's COM API can easily be migrated to 
AvadeServer as an alternate (or preferred) option. 
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AvADE Client (AvadeClient.exe) 
 
AvadeClient is a test utility that serves as a sample client application.  It allows the user to type and send arbitrary 
text commands to the Avade server while viewing server-to-client responses in a log window.  The command 
entry droplist contains several test commands.  The default script works with the default AvadeServer 
configuration and tests and demos several Avade features. 
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AvADE Server (AvadeServer.exe) 
 
Avade supports a variety of features organized around the concept of sound "sources" and sample "streams".  
For the Spatial Render Plugin, a "source" is a virtual environment sound emitter, i.e., a virtual entity with an 
azimuth, elevation, and range relative to a listener.  For the Mixer Render Plugin, a source is a mixer channel 
strip, i.e., output channel gains and a binaural HRTF effects processor.  For both plugins, a stream is the sound 
sample stream that plays from the sound source, e.g., wave files, TTS speech, DIS Radio communications, signal 
generators, etc. 
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Supported Sound Source Parameters 
• Both Plugins 

o Enable 
o Gain (dB) 

• Spatial Render Plugin 
o Spatialization (Spatial, Relative, Panned) 
o Azimuth, Elevation, and Range (Spatial and Relative sources) 
o Pan (Panned sources) 
o Source Radius and Spread Rolloff (source-listener distance attenuation) 

• Mixer Render Plugin 
o Binaural HRTF Processor Enable, Azimuth, and Elevation 
o Output Channel Gain Scalars (ASIO device channels 1-8) 

 
Supported Sample Stream Input Types 
• wave files (looping and one-shot) 
• real-time TTS speech 
• multichannel sound device input (ASIO driver required) 
• signal generators (stream type for "sonifiers") 
• DIS Radio communications 

The underlying audio engine, slab3d, supports several additional source parameters and stream types.  Support 
for these can be added as needed.  All source, stream, and Avade parameters can be saved to and read from 
human-readable XML files.  A time-stamped log window provides high-level Avade status information (e.g., user 
activities, incoming messages).  A polled audio engine status window provides low-level information (e.g., 
auditory scene state, error status).  This allows the user to confirm that Avade GUI and client command settings 
have been instantiated by the audio engine. 
 
A preliminary set of Avade commands have been implemented.  Additional commands can be easily added.  
Wave files can be played and stopped from the client and placed in priority queues for playback.  TTS speech can 
be generated on demand and also placed in priority queues.  All higher priority playback plays before lower 
priority playback.  Lower priority playback is interrupted to allow for an incoming higher priority message.  The 
lower priority playback is then played again from the beginning.  DIS (Distributed Interactive Simulation) Radio 
communications (IEEE standard 1278) can be streamed over network connections.  Client communications can 
occur via the included DISTrans and DIS_Radio applications or other DIS radio transmitters.  These 
communications include a frequency that can be used to specify individual communication channels, allowing one 
to spatialize different channels to different positions in auditory space. 
 
For audio output, Avade supports three device driver interfaces, Waveform-Audio, DirectSound, and ASIO.  
Waveform-Audio has the highest latency but is supported by all Windows audio hardware.  DirectSound is similar 
to Waveform-Audio but can provide lower latency.  ASIO has low latency and flexible configuration options, but is 
supported by a smaller set of semi-pro and pro audio hardware. 
 
AvADE Commands 
 
AvadeServer responds to the following string commands sent by a UDP or TCP/IP client.  The AvadeClient utility 
can be used to test and demonstrate the use of these commands.  These commands are also documented on the 
AvadeServer and AvadeClient Help tabs. 
 
Note!  For commands that have GUI settings, the command value will override the GUI value.  The GUI value will 
remain unchanged.  The Apply button applies the GUI values to the renderer.  In this context, the GUI values can 
be thought of as Initial Conditions.  The GUI values are also the values saved when saving an AvadeServer 
configuration. 
 
play( sourceName ) 
play() rewinds and plays the stream attached to a sound source. 
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playstream( sourceName, streamName, priority ) 
playstream() attaches, rewinds, and plays a sound source stream.  A stream of higher priority will preempt a 
stream of lower priority.  Priority is specified 1 (highest) to 5 (lowest). 
 
stop( sourceName ) 
stop() stops the stream attached to a sound source. 
 
enable( sourceName, enableState ) 
enable() enables (true) or disables (false) sound source rendering. 
 
originLLH( latitude_degrees, longitude_degrees, height_feet ) 
originLLH() sets the ENU East/North/Up origin for the LLH Latitude/Longitude/Height commands listenerLLH() 
and obstacleLLH(). 
 
listenerLLH( latitude_degrees, longitude_degrees, height_feet, yaw, pitch, roll ) 
listenerLLH() places the listener using LLH coordinates (see originLLH()). 
 
obstacleLLH( sourceName, latitude_degrees, longitude_degrees, height_feet, 
    yaw_deg, pitch_deg, roll_deg, 
    size_height_feet, size_width_feet, size_depth_feet) 
obstacleLLH() places a sound source using LLH coordinates (see originLLH()). 
Note: The latter six parameters are presently ignored and are provided for future development. 
 
listener( x_meters, y_meters, z_meters, yaw_degrees, pitch_degrees, roll_degrees ) 
listener() positions the listener using a Cartesian location and Euler orientation. 
 
polar( sourceName, az_degrees, el_degrees, r_meters ) 
polar() positions a sound source using polar coordinates. 
 
rel( sourceName, az_degrees, el_degrees, r_meters ) 
rel() positions a sound source relative to the listener.  If the listener is moved, the source moves as well. 
 
pan( sourceName, pan_value ) 
pan() positions a source via left-right gain scalars. 
pan_value range: 0.0 = monotic-left, 0.5 = diotic, 1.0 = monotic-right 
 
speak( sourceName, tts_text, priority ) 
speak() speaks the text specified in tts_text using the source specified by sourceName.  tts_text quotation marks 
are optional.  A stream of higher priority will preempt a stream of lower priority.  Priority is specified 1 (highest) to 
5 (lowest). 
 
sonify( sourceName, sonified_values1,2,3 ) 
sonify() sonifies the float values passed in sonified_values1,2,3.  The sonification depends on the Sonifier 
selected for the source (Sources tab).  Not all sonifiers respond to sonify(); some depend on virtual environment 
state, e.g., ObstacleFM. 
 
mixgain( sourceName, g1, g2, g3, g4 ) 
mixgain() adjusts ASIO output ch 1-4 gain scalars for sourceName. 
 
mixhrtf( sourceName, enable, az, el, gain ) 
mixhrtf() enables/disables HRTF processing using the azimuth, elevation, and gain specified for sourceName.  
The L/R binaural stream is output on channels 1 and 2 (mixed with mixgain() streams, if any). 
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Sonifiers 
 
Translation sonify( transX, transY, transZ ) 
AzElRange sonify(  az, el, range ) 
AzNoiseTone sonify( az, ignored, ignored ) 
AzImpTone sonify( az, ignored, ignored ) 
Drift  sonify( xDisplacement, yDisplacement, zDisplacement ) 
Generic  sonify( xDisplacement, yDisplacement, zDisplacement ) 
ObstacleNT VE source-listener distance thresholds, 90ft Advisory, 60ft Caution, 40ft Warning 
ObstacleFM VE source-listener distance thresholds, 90ft Advisory, 60ft Caution, 40ft Warning 
ObstacleFMSin VE source-listener distance thresholds, 90ft Advisory, 60ft Caution, 40ft Warning 
 
Translation, AzNoiseTone, ObstacleFM, and ObstacleFMSin are fully implemented sonifications.  The others 
were used in development. 
 
 
AvADE Software Architecture 
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Appendix 
 
 
Latency Analysis 
 
Several rounds of slab3d latency analysis have been performed: 
 
2003 J.D. Miller, M.R. Anderson, E.M. Wenzel, and B.U. McClain, “Latency Measurement of a Real-Time 

Virtual Acoustic Environment Rendering System,” Proc. 2003 ICAD, Boston, MA, July 2003. 
Paper  Poster 

 
2005 The technote "tn20050228_asio_latency_reduction.docx" describes an ASIO-based audio latency 

analysis and reduction effort. 
 
2012 The technote "tn20120319_av_latency.docx" discusses a Windows Vista XNA 3.1 C# audio-visual latency 

analysis effort. 
 
2014 Two ASIO audio peripherals were tested for use with the AvADE auditory server.  Their latency values 

are tabulated below. 
 
2014 The technote "tn20120319_av_latency.docx" was revisited for a quick Windows 7 and XNA4 

investigation. 
 
2014 The technote "tn20140917_av_latency.docx" discusses a Windows 7 and XNA4 latency analysis 

performed using the xbox controller.  This effort also investigated XNA and Windows timing. 
 
2015 The DIS Radio and VoIP latencies were measured.  The results are tabulated below. 
 
2016 The technote "tn20160616_avade_latency.docx" presents an Avade Client/Server latency analysis that 

compared the MOTU PCIe-424 and the USB RME Fireface UFX audio peripherals. 
 
 
AvADE ASIO Audio Peripheral Latency Comparison 
 
 
ASIO driver MOTU PCI ASIO Focusrite USB 2.0 Audio Driver 
buffer size setting* 64 128 256 89 (2.0ms) 133 (3.0ms) 
AvADE Get ASIO Details 
(samples unless stated) 

     

min buffer size 64 128 256 89 133 
max buffer size 64 128 256 1024 1024 
preferred buffer size 64 128 256 89 133 
granularity 0 0 0 1 1 
selected buffer size 64 128 256 96* 160* 
input latency 86 150 278 232 360 
output latency 87 151 279 328 520 
est API latency (ms) 3-5 6-9 12-18 10-12 15-19 
est mean API latency (ms) 4 8 15 11 17 
est I/O latency (ms) 5 10 18 15 24 

 
* For the MOTU PCIe/24I/O, buffer sizes are set via the MOTU PCI Audio Console app and the Samples Per 
Buffer setting.  For the Focusrite Scarlett 18i20, buffer sizes are set via the MixControl app and the ASIO Buffer 
Size setting (in ms).  slab3d requires the buffer size to be a multiple of the audio processing frame size (32 
samples). 
 
 

http://humansystems.arc.nasa.gov/publications/20051222163516_Miller_2003_ICADMAWM.pdf
http://humansystems.arc.nasa.gov/publications/20051222163550_Miller_2003_ICADMAWM_poster.pdf
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DIS Radio and VoIP Latency 
1/20/2015 (revised 6/21/2016, v6.7.5, "Note 2" added) 
 
There are two SRAPI DIS Radio APIs: 
 
1) 2009/JDM = Joel Miller's DIS API developed circa 2009 using the AFRL-provided slabDISInterface library. 

Stream Types:  StreamInDISRadioRT, StreamInDISFreq 
 

2) RT_DIS/JMS = John Stewart's Real-Time DIS API integrated late 2013, built using John's rtdis library. 
Stream Type:  StreamInDISRT 

 
Latency tests were performed with the apps DISTrans (ASIO) and SLABCall (Waveform-Audio, VoIP) transmitting 
to Netcom (ASIO) on a single PC.  Headset mic input was split to left-audio-in on a second PC.  Netcom output 
was sent to right-audio-in on the second PC.  All sample rates were 44,100 Hz.  The DISTrans/SLABCall/Netcom 
PC used a Focusrite Scarlett 18i20 with a 2ms ASIO buffer size for an audio I/O device.  The measurement PC 
used a MOTU PCIe 24I/O. 
 
Stream types are shown as defined in slabwire file streams.h and slabsharp file SlabSharp.cs.  In SRAPI, these 
map to corresponding SiAlloc*() functions and settings. 
 
 

Stream Type Latency Settings 
StreamInDISRadioRT 33 ms 10ms pre-buffer 
StreamInDISFreq 34 ms 10ms pre-buffer 
StreamInDISRT 27 ms 10ms pre-buffer 
StreamInVoipPort 134 ms  
StreamInVoipID 98 ms  
Scarlett in-to-mix-out 28 samples  

 
 
Note 1:  The stream type StreamInDISRadio was removed from SRAPI in slab3d v6.7.4 to simplify the 2009 API.  
Its only advantage was non-real-time output support, e.g.,file alone.  Sound device output can be split to a file to 
provide similar functionality.  StreamInDISRadio latency was measured to be 636 ms using a 600 ms pre-buffer (it 
was a legacy algorithm that required relatively large buffers; StreamInDISRadio was replaced by 
StreamInDISRadioRT). 
 
Note 2:  Given the DIS and VoIP latency results and the fact that the underlying VoIP engine (jvoip) was 
discontinued years ago, StreamInVoipPort and StreamInVoipID were removed in slab3d v6.7.5.  Also, the 
RT_DIS software contains transmission support (see DISTrans app), so an end-to-end DIS capability now exists 
making VoIP unnecessary.  The Netcom app mentioned above is now DISRec (DIS Receiver). 
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